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Abstract:  

The concept of this calculating method is based on the assumption that the distribution of the 

speeds along the river depth can be approximated by parabolas that slip on a very thin 

boundary layer on the bottom of the river. The thickness of this boundary layer,  

δ=Ο(1/ Re ), is negligible regarding the measured values of depth in different locations. The 

discrete points determined by data from the measurements in locations along the width of the 

river are connected by continuous and smooth lines that are generated by spline-interpolations. 

The calculation of transported quantity is done by integration between these lines. 

The calculating method presented here is just a theoretical one. For its use to real data it is 

necessary to develope an adequate computer programme either in MATLAB or in Maple or in 

other suitable programming language. The accuracy of measurements highly influences the 

exactness of the calculation. 
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1 INTRODUCTION  

The importance of the determination of the flow of a smaller river has several ecological and 

other reasons. There are some procedures for the approximative calculation of the flow since the 

times before using of computers as treated in [1] and in [2]. An other one of the several 

calculating methods is based on calculation of the average area of transects and on that of 

middle surface speed and applying the formula Q=ALC/T, where A is the average area of two 

transects in a distance L from each other, C is a correctional coefficient depending on the type 

of the bottom and varying between 0.8 and 0.9, and T is the average time the water flows the 

distance L. T is to be measured several times in order to get a more accurate average value. 

2 EXPERIMENTAL RESULTS AND DISCUSSION 

The method to be presented here is based on few measured data acquired in different locations 

along the width of the river and on an experimental coefficient which depends on the type and 

quality of the bottom surface of the river bed. 

The flow of a river depends on many circumstances as wether the river is tidal or ebbing or 

steady, because the water surface is respectively slightly convex or slightly concave or 

horizontal. The measurments have to take place on a straight stretch. Assuming the continuity of 

the flow the following equation holds: 
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and even so that every member in (1) is to be equal to zero, where u,v,w  are the components of 

the velocity of the flow. 

 

Despite the straightness of the stretch the flow near the bottom is turbulent and it has a very thin 

boundary layer with the bottom of the river. The thickness of the boundary layer can be 

estimated as )
Re

1
(O . Within the boundary layer the flow is laminar. The statements and 

calculations regarding the boundary layer with the bottom are detailed in [3] and [4]. 
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Figure 1: The distribution of speeds along the width and the depth of the river 

The thickness is very small, therefore its value is negligible from the values of depth measured 

along the width of the river. Despite the turbulent phenomena near the bottom we assume that 

the thread elements of the water are straight in time t , that is, the lengths of their way can be 

regarded as values of a function of two variables. 

 

 

Figure 2. Continuous and smooth distribution of speeds 

between two neighbouring location 
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   The data to be measured are: the velocities of the flow on the surface: )( isrf yv , the values of the 

depth along the width in different locations, )( iyb , ],0[ wyi  , ni ,...,2,1 ; w  denotes the width of 

the river.  

As it is known the maximal velocity of the flow of a river is not necessarily on the surface, but at some 

deepness, so in case of a deeper river the values )(max iyv  and their depths )( im yz  are also to be 

measured, if even not entirely along the whole width, but at least in some locations in the main stream. 

The locations of the measurments are to be distributed uniformly, but not necessarily equidistant, 

along the width of the river. For the correctness of the dimensions we take the values of velocities as if 

multiplied by some t .  

The concept of the calculation is based on the assumption, that the distribution of the speeds of the 

flow along the depth can be approximated by parabolas that slip on the boundary layer. Another new 

aspect of this calculating method is the feature that the points determined by discrete measured values 

are connected by continuous and smooth lines generated by spline-interpolations. The integration is 

done between these lines in order to get the quantity of water transported by the river in the time t , 

[T]. 

Let us denote srfsrf vyv )( , maxmax )( vyv  , [L/T], byb )( , mm zyz )( , [L]. 

Two cases will be discerned according to the location of the vertex of the parabolas. 

Case 1: the vertex of the parabola of the distribution of speeds along the depth is on the surface of the 

river which means that maxvvsrf  . 

Now we determine the coefficients of a general equation of second degree, 

32

2

1)( azazazf  ,   01 a . 

In this case )(zf  is an even function, so 

32

2

1)()( azazazfzf   implies 02 a . 

3

2

1)( azazf  , for 0z  we obtain srfvaf  3)0( . 

For bz   we get  srfvbabf  2

1)( . 

The experiments indicate that the speed of flow on the bottom is max6.0 v . This experimental 

coefficient can vary in value depending on the type and quality of the surface of bottom. In a case of 

further simplification it can also be taken as srfv6.0 . 

srfsrf vvba 6.02

1   thus we get 
21

4.0

b

v
a

srf
 . 

If we have got measured data for both the speeds on the surface and the depths in 1n  inner locations 

along the width of the river, then the quantity Q, ][L3
, can be calculated by integration. Both the 

surface speed and the depth are zero at the both banks. 
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Between two measured values )( isrf yv  and )( 1isrf yv , respectively )( iyb  and )( 1iyb , )(yvsrf  and 

)(yb  as functions of ],0[ wy  are to be interpolated by a set of polynomials of degree 3. This set of 

plynomials constitutes a spline-interpolation of their curves which are continous and smooth, that is, 

they are differentiable with respect to y . 

Now we briefly review the method and procedure of the execution of a spline-interpolation by 

polynomials of degree 3. A description of splines is to be found in [5]. 

Let n+1 data )( ii yff   be given of an )(yf  function, i = 0,1,…n.  

Let ),....,( 110  npppp be a set of polynomials, each of them of degree 3. 

For the polynomials let the follows hold:  

 

)()( 1 iiii ypyp   

)()( 1 iiii ypyp 
  

)()( 1 iiii ypyp 
        1,...,2,1  ni                     (3) 

0)()( 100 
 nn ypyp                                    (4) 

 

These equalities mean that the polynomial p is continuous and smooth in every iy location, 

furthermore that here the measure of the curvature of p equals to those of the both adjacent 

polynomials.  

Let p interpolate function )(yf , that is, iiiii fyfypyp  )()()(   and 

111111 )()()()(   iiiiiii fyfypypyp . 

Let us introduce )( ii yps  , that is, iii syp  )(   and  11)(  
iii syp . 
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Let t and ih  be the following: 
i

i

h

yy
t


  and iii yyh  1 , furthermore 
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dy
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. 

Let us introduce a new polynomial for )(ypi , of which coefficients we will get from the Hermite-

interpolation for the two endpoints: )()()( thypyptq iiiii  , where ]1,0[t . 

Thus, iiii fypq  )()0(   and  11)()1(   iiii fypq  and 
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From the known formula of the Hermite-interpolation we get: 

 

))2()2)(1)((1()1()( 111

22

  iiiiiiiii shftshftttftfttq . 

Differentiating iq  twice we get: 

 

)2(2)(6)0( 11  
iiiiii sshffq     and 

)2(2)(6)1( 11  
iiiiii sshffq . 

 

Our next task is to determine the values of is , n,...,2,1,0i . 

From (4) we get: 
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From (3) we get: 
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From (4) we get again: 
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This constitutes a system of linear equation of n+1 equations for is , n,...,2,1,0i . 
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The solution of (5) provides the values of s. 

The system has a unique solution for s, because for every s≠0 0TsAs , so matrix A is positive 

definite. 
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In case 1 the procedure above is to be executed twice, first the if -s take the values of )( isrf yv , 

thereafter they take those of )( iyb . 

 

 

 

 

Let 
b

iq and srfv

iq  denote the polynomials obtained by the spline-interpolations, then (2) takes the 

form: 

                 dttqtqhQ srfv
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Case 2: 

Now let us examine the case when the vertex of the approximating parabola is under the surface of the 

river, at the depth of )( im yz . In this case the calculation needs two further types of data, namely the 

values of )(max iyv  and those of )( im yz . A parabola of which directrix is parallel to z-axis, can be 

determined uniquely by its three points. Only one restriction is to be observed for the points, namely 

none of them is allowed to be the vertex of the parabola. It is because none of the three given points 

will necessary be the vertex of the unique parabola running through them. 
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.     

Figure 3. In case 2 the vertex is below of the surface 

 

 

The general form of the equation of such a parabola is: 0
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The known points are: 

 

     )6.0,())(,(z  ),,2())(,(z  ),,0())(,( max332211 vbzfvzzfvzfz srfmsrf     

The point ),( maxvzm is expected to be vertex of the parabola, but it approximates the point only.  
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To obtain the equation in the form 32

2

1)( czczczf  we expand the above determinant in two 

steps. 
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After expanding the above determinants and after simplifications we get: 
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For (7), as an other type of parabolas, the integration and thereafter the necessary spline-interpolations 

shall be done. 

In practice the calculating Q  may require the integration of the both types of parabolas, because the 

measurments of data )(  and   )(max imi yzyv  seem to be necessary in locations of the main stream and 

eventually in those of deeper place only. In such a case, let us say, three measured data mean five data, 

because the data set includes the initial and final zero data. 

In order to reduce the number of measurements further simplifications can be done.  

 

 

Substituting srfvv by   max , that is, at the bottom, on the boundary layer the speed of flow is substituted 

by srfv6.0 , then from (7) we get: 
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If we suppose that )()( ycbyzm    and we guess the value of c as an other experimental coefficient, 

thus, the number of measurements will be reduced to the necessary minimum. So the double 

integration of (8) needs again polynomials 
b

iq  and srfv

iq  only. 
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3 CONCLUSION 

This calculating method can be put into practice by developing programmes in an adequate language 

for the measured data. 

For real data a system of programmes to be developed could prove the practical usability and some 

closer accuracy of this calculating method. 
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